Neural Network and Local Search to Solve Binary CSP
نویسندگان
چکیده
منابع مشابه
Using Duo Output Neural Network to Solve Binary Classification Problems
This paper proposes an approach to solve binary classification problems using Duo Output Neural Network (DONN). DONN is a neural network trained to predict a pair of complementary outputs which are the truth and falsity values. In this paper, outputs obtained from two DONNs are aggregated and used to predict the classification result. The first DONN is trained to predict a pair of truth and fal...
متن کاملOrchestrating CSP and Local Search to Solve a Large Scale Energy Management Problem
This paper presents a heuristic approach combining constraint satisfaction, local search and a constructive optimization algorithm for a large-scale energy management and maintenance scheduling problem. The methodology shows how to successfully combine and orchestrate different types of algorithms and produce competitive results. The local search for production assignment is a simple yet optima...
متن کاملA Neural Network Model to Solve DEA Problems
The paper deals with Data Envelopment Analysis (DEA) and Artificial Neural Network (ANN). We believe that solving for the DEA efficiency measure, simultaneously with neural network model, provides a promising rich approach to optimal solution. In this paper, a new neural network model is used to estimate the inefficiency of DMUs in large datasets.
متن کاملAPPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2018
ISSN: 2502-4760,2502-4752
DOI: 10.11591/ijeecs.v10.i3.pp1319-1330